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ABSTRACT: Drug−drug interactions (DDIs) are a major concern
in clinical practice and have been recognized as one of the key
threats to public health. To address such a critical threat, many
studies have been conducted to clarify the mechanism underlying
each DDI, based on which alternative therapeutic strategies are
successfully proposed. Moreover, artificial intelligence-based models
for predicting DDIs, especially multilabel classification models, are
highly dependent on a reliable DDI data set with clear mechanistic
information. These successes highlight the imminent necessity to
have a platform providing mechanistic clarifications for a large
number of existing DDIs. However, no such platform is available yet.
In this study, a platform entitled “MecDDI” was therefore
introduced to systematically clarify the mechanisms underlying the
existing DDIs. This platform is unique in (a) clarifying the mechanisms underlying over 1,78,000 DDIs by explicit descriptions and
graphic illustrations and (b) providing a systematic classification for all collected DDIs based on the clarified mechanisms. Due to the
long-lasting threats of DDIs to public health, MecDDI could offer medical scientists a clear clarification of DDI mechanisms, support
healthcare professionals to identify alternative therapeutics, and prepare data for algorithm scientists to predict new DDIs. MecDDI
is now expected as an indispensable complement to the available pharmaceutical platforms and is freely accessible at: https://idrblab.
org/mecddi/.

■ INTRODUCTION
Drug−drug interactions (DDIs) are a major concern in clinical
practice and have been recognized as one of the key threats to
public health.1−5 To address such a critical threat, many studies
have been conducted to clarify the mechanisms underlying each
DDI,6−9 and alternative therapeutic strategies are subsequently
proposed.10−13 Taking the antihypertensive medication amlo-
dipine as an example, it is frequently co-administered with
cholesterol-lowering drugs14 and results in a significant DDI
with a commonly prescribed anti-dyslipidemia drug simvastatin
by inhibiting its metabolizing enzyme CYP3A4.15 To overcome
the DDI, another drug rosuvastatin (which is not a substrate of
CYP3A4) is proposed as the alternative to simvastatin in the co-
medication.16 In other words, the successful discovery of a new
therapeutic strategy to avoid undesired clinical DDI is highly
dependent on the mechanistic clarification (especially at the
molecular level) for each DDI,17−20 which has been widely and
successfully adopted in the clinical practice.21−24

However, current clarifications of the mechanisms for existing
DDIs are far from comprehensive, which makes it very difficult
to cope with treatment failure and adverse drug reactions
induced by DDIs.25−30 Various DDI mechanisms have therefore

been revealed, which can be classified into two types:
pharmacokinetic (PK) and pharmacodynamic (PD)
DDIs.31−37 Particularly, the PK DDIs (as illustrated in Figure
1) indicate the alterations of one drug’s ADME (absorption,
distribution, metabolism, and elimination) profile by anoth-
er,31−33 and the PD DDIs (as shown in Figure 2) arise when the
pharmacological effect of one drug is affected by that of
another.34 These newly revealed mechanistic data, on the one
hand, are key to extending our understanding of the occurrence
of a specific DDI and inspiring the identification of new
therapeutic strategies.38−42 On the other hand, with the
extensive application of computational techniques [especially,
artificial intelligence (AI)] to DDI-related research,43−46 such
mechanistic data have become even precious for researchers in
the fields of pharmacoinformatics, bioinformatics, and clinical
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Figure 1. PK type of DDIs, which indicate the alterations of one drug’s ADME profile by another. PK DDIs could be categorized into five subclasses,
which include affected intra/extra-hepatic metabolism, cellular transport, gastrointestinal absorption, organization distribution, and excretion
pathways.

Figure 2. PD type of DDIs, which denote how the pharmacological effect of one drug is affected by that of another. PDDDIs could be grouped into two
subclasses, which include the PD additive and antagonistic effects.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01656
J. Chem. Inf. Model. 2023, 63, 1626−1636

1627

https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01656?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


practice.47−53 Therefore, a knowledge base providing mecha-
nistic clarifications for a large number of existing DDIs (both PK
and PD) is highly required.
So far, several databases have been constructed to provide

DDI-relevant information, which have become popular data
resources for current pharmaceutical studies.54−63 Some of them
contain DDI information as part of a broader collection of
biological and pharmacological data (such as DrugBank,54

TTD,55 SuperDRUG2,56 Transformer,57 and Super-
CYPsPred58), and some others focus on providing the clinical
phenomena and outcomes of DDIs (such as DDInter,59

Drugs.com,60 and Liverpool drug interaction61). Particularly,
DDInter, the newly-constructed DDI database, provides a
wealth of DDI information. These databases have attracted
broad interest from the research community and accumulated a
huge number of visits and citations in the past few years.54−63

However, none of the databases provides explicit clarifications
on the molecular mechanism underlying a comprehensive list of
existing DDIs (both PK and PD).
In this study, a platform named “MecDDI” was therefore

introduced to systematically clarify the mechanisms underlying
DDIs. To the best of our knowledge, this platform is unique in
(a) clarifying the mechanisms underlying >1,78,000 DDIs by
explicit descriptions and graphic illustrations and (b) providing
a systematic classification for all collected DDIs based on their
clarified mechanisms. Due to the long-lasting threats of DDIs to
public health, this database could provide medical scientists with
a clear clarification of the mechanism underlying all existing
DDIs, support healthcare professionals in the identification of
alternative therapeutic strategies, and prepare valuable big data
for algorithm scientists to predict potential DDIs. All in all,
MecDDI is expected to be applied as an indispensable
complement to the available pharmaceutical databases and is
now freely accessible by all users at https://idrblab.org/mecddi/
.

■ MATERIALS AND METHODS
Data Collection, Curation, and Processing. DDI data

were collected based on the following procedure. First, >2000
approved drugs were collected from the official site of the U.S.
FDA and several well-established databases (such as Drug-
Bank54 and TTD55). Second, based on these drugs, a large
amount of DDI data was obtained from the corresponding drug
labels provided by the FDA website and the scientific literature
retrieved from PubMed, which brought the number of raw DDI
data to nearly 2,00,000. Third, further systematic reviews were
conducted to extract the mechanism information underlying
each identified DDI, and other important information (such as
clinical consequence and management recommendation) was
also collected during literature reviews. In total, 1,78,406 DDIs
with mechanism information were generated during this
process. Of these DDIs, 1,56,445 and 1,00,609 DDIs were
manually extracted from the drug interactions section of drug
labels and scientific literature, respectively (78,648 DDI data
were reported in both FDA labels and scientific literature). The
mechanism of DDI was analyzed and identified by a professional
team of clinical pharmacists and further classified according to
the specific aspects of PK or PD that affect the drug. Finally, the
severity of each DDI was reviewed and categorized into different
levels: major, moderate, and minor.64 As defined in the previous
publication,64 “major” indicates that the corresponding DDI is
life-threatening or requires medical intervention for reducing
serious adverse outcomes, which should be avoided in clinical

practice; “moderate” denotes that the studied DDI exacerbates
the condition of patients, which asks for a modulation in the
dosage/usage of current therapy; “minor” refers to that the
studied DDI limits the clinical outcome but does not require
modulation in therapy.

Online Platform Implementation. The MecDDI is
programmed using PHP and deployed on the Apache HTTP
Server and the Ubuntu operating system. All data in MecDDI is
stored and managed with MySQL v15.1 for easy custom
database searching. The web user interface is developed in
JavaScript, HTML5, and CSS. To enhance the experience of
user interaction, the visualization of dynamic data is
implemented with ECharts v5.3.3, including the generation of
sunburst graphs and relationship graphs for each drug.
Furthermore, MecDDI has been tested on different browsers,
such as Google Chrome, Mozilla Firefox, Safari, and Internet
Explorer 10/later, to ensure that all data is searchable. The web
interface is available online at https://idrblab.org/mecddi/.

■ RESULTS AND DISCUSSION
Data Summary and Analysis of MecDDI. In MecDDI, a

total of 1,78,406 DDIs with experimentally/clinically clarified
mechanisms, covering 1922 approved drugs, were manually
documented based on systematic literature reviews. Drug-type
information was obtained fromTTD55 andDrugBank.54 1673 of
the drugs were small-molecule drugs, accounting for approx-
imately 87% of all drugs, followed by protein/peptide and
antibody drugs (including monoclonal and polyclonal antibod-
ies) with 91 and 90%, respectively. The approved disease
indications for these drugs were linked to International
Classification of Diseases (ICD)-11 codes. To understand the
disease-specific DDIs, a statistical analysis was performed to
determine the average number of DDIs caused by the drugs
included in the different ICD codes. Drugs for neoplasms (285
drugs), mental, behavioral, or neurodevelopmental disorders
(120 drugs), and diseases of the nervous system (136 drugs)
involved more DDIs, with an average number of DDIs per drug
of 406, 337, and 237, respectively. In MecDDI, 47.2% of drugs
were able to interact with≥100 drugs, with the drug that caused
the most DDIs being ozanimod, which interacted with 679
drugs. The main mechanisms that ozanimod (a sphingosine 1-
phosphate receptor modulator used to treat multiple sclerosis
and inflammatory bowel disease)-triggered DDIs include (1) an
increased risk of ventricular arrhythmias in patients receiving
concomitant drugs with the same adverse effects or prolonged
QT interval due to its risk of bradycardia and atrioventricular
block and (2) may increase the risk of unexpected additive
immunosuppressive effects when co-administered with antineo-
plastic, immunosuppressive, or other immunomodulatory
therapies. Such mechanistic data were clearly described and
systematically categorized in the MecDDI and further provided
risk severity levels and recommendations for action for the DDI
by which medical professionals can gain insight and effectively
manage the DDI.

Comprehensive List of DDIs for the Studied Drugs.
Drugs are frequently reported to be able to interact withmultiple
co-administered agents.65−68 Particularly, with the rapidly
accumulating number of aging people, there is a significant
increase in the incidence of multiple acute/chronic diseases,
which greatly promotes the administration of combinatorial
therapies and a subsequent threat of DDIs.69−76 Therefore, a
comprehensive collection of all drugs that interact with the
studied drugs is of great importance to the prevention of
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potential DDIs, and such full lists of DDIs for each drug were
provided in MecDDI. In Figure 3, the drug page that describes
the general information of a drug together with the list of DDIs
for this drug is provided. Taking the drug entacapone as an
example, the general data of this drug is provided in the upper
part of Figure 3, including drug name, drug type, synonym,
disease indications, therapeutic class, 3D and 2D molecular
structures, formula, InChI, InChIKey, SMILES, as well as the
external link to the existing databases: PubChem,77 CAS,
ChEBI,78 TTD,55 VARIDT,79 and INTEDE.80 Moreover, a list

of drugs interacting with entacapone is described in the lower
part of Figure 3. The molecular information on these drugs
(such as formula and compound ID) and the severity level of the
DDI are also provided. Users can click on the “Inter Info” button
to jump to a new page explicitly describing a particular DDI.

Explicit Clarification of the DDI Mechanisms. The
mechanisms underlying a particular DDI provide an effective
way to identify and avoid its potential harm.81−83 The
explanation of the molecular mechanism for these DDIs
provides a solid foundation for clinicians to deeply understand

Figure 3.Typical drug page providing the general information of a drug together with the list of DDIs of this drug. In the upper part, the general data of
the drug are provided, which include drug name, drug type, synonyms, indications, therapeutic class, 2D/3D molecular structures, and so on. In the
lower part, various drugs interacting with the studied drug are further categorized based on the classification system (class, subclass, and leaf-class)
constructed in and adopted by this study. Detailed description on each DDI could be accessed by clicking the “Inter Info” button.
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how DDI is developed and discover effective alternative
therapies.83−86 In this study, MecDDI is thus developed to
clarify the mechanisms underlying >1,78,000 DDIs by explicit
descriptions and graphic illustrations.

Explicit Description and Graphic Illustration of DDI
Mechanisms. Clarification of the mechanisms underlying each
DDI was provided in the MecDDI database. Taking the
interaction between entacapone and solriamfetol as an example

Figure 4.Typical page of the DDImechanism demonstrated by explicit description and a graphic illustration. Graphical illustration of eachmechanism
is depicted according to the DDI mechanism category. The mechanism underlying a DDI and the different roles played by two drugs in this DDI are
provided. The biological functions of the molecules playing essential roles in the DDI are also described. The structures and sequences of these
essential molecules could be accessed by clicking the button in the dark blue background. The summary of the mechanism underlying each DDI is
depicted for each DDI.
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(as shown in Figure 4), first, the corresponding mechanism of
this DDI is described, and the different roles played by two drugs

in this DDI are specified based on a comprehensive literature
review. Then, the biological functions of any molecules playing

Figure 5.Hierarchical visualization of the DDI classification system (class, subclass, and leaf-class) for a particular drug constructed and adopted in this
study. Two interactive plots including sunburst and relationship graphs based on this classification system are provided.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01656
J. Chem. Inf. Model. 2023, 63, 1626−1636

1631

https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01656?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01656?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


essential roles in the mechanisms of this DDI are explicitly
described in the online DDI page, which include protein name,
gene name, UniProt ID, KEGG ID, protein family, protein
function, etc. In the meantime, both structures and sequences of
these essential molecules are collected and provided via clicking
“Structure” and “Sequence” buttons on a dark blue background
(shown in Figure 4). Finally, a summary of the mechanism
underlying each DDI is explicitly provided. Notably, if more
than one mechanism is involved in the DDI, all mechanisms
would be displayed on the interactions page. Moreover, a
graphical illustration of eachmechanism is depicted according to
the DDI mechanism category. As shown in the upper section of
Figure 4, the interaction pattern of the DDI generated through
the same class of mechanisms is described, which was created
using BioRender.com.

Systematic Classification of All DDI Mechanisms. The
mechanisms underlying DDIs were found to be extremely
diverse.87−89 Therefore, it was highly demanded to have a
systematic classification of the existing interaction mechanisms.
InMecDDI, a well-established classification system based on PK
and PD was adopted.90,91 For each of the well-established
classifications, further classifications (subclasses) were system-
atically constructed for all DDI mechanisms in the study.
Classification System Constructed and Adopted in

MecDDI. The mechanisms of DDIs provided in MecDDI were
first classified based on the well-established PK and PD
systems.90,91 As illustrated in Figure 1, the PK DDIs92−94 were
further grouped into five subclasses, which included affected
intra/extra-hepatic metabolism, cellular transport, gastrointesti-
nal absorption, organization distribution, and excretion path-
ways. Moreover, the PD DDIs,34,95 as illustrated in Figure 2,
could also be further grouped into two subclasses, which
included the PD additive and PD antagonistic effects.
All seven subclasses of mechanisms were further divided into

109 leaf-classes. For example, based on various metabolic
enzymes and mechanisms of action, the effects on intra/extra-
hepatic metabolism could be divided into the inhibition of
CYP450 enzyme, the induction of UGTs, and so on; the cellular
transport could be divided into the inhibition of transporters, the
induction of transporters, and so on; and the PD additive effects
could be divided into additive cholinergic effects, additive
dopaminergic effects, and so on.
Online Description of a Drug’s DDIs by the Classification

System. As shown in the lower section of Figure 3, a list of drugs
that were reported to interact with the studied drug was
systematically categorized using the classification system (class,
subclass, and leaf-class) constructed in this study. Taking the
drug entacapone as an example, a total of four subclasses were
identified and adopted to classify all drugs in the interaction list
into four groups. Moreover, the mechanism could be further
divided to seven leaf-classes, such as the CYP450 enzyme
inhibition, non-CYP450 enzyme inhibition, and so on. To
intuitively describe the distribution of mechanisms and the
correlation of all DDIs for a studied drug, two interactive plots
based on the classification systemwere constructed. As shown in
Figure 5, a sunburst graph and a relationship graph were drawn.
In the sunburst graph, the subclass and the leaf-class of the
mechanism for all DDIs were represented from inside to outside,
respectively. The detailed description on the mechanisms can be
found by clicking the “Legend Information” button. In a
relationship graph, the first node denoted the studied drug, and
the secondary and tertiary nodes represented the subclasses and
leaf-classes, respectively. The interacting drugs belonging to

each mechanism class were given as leaf nodes. Users can hover
the mouse on the node to obtain detailed data of the
mechanisms and drugs.

Rational Drug Use and Potential DDI Prediction.
Mechanisms of DDI to Facilitate Rational Drug Use. In
order to reduce the risk of harm from a DDI caused by the
coadministration of two drugs that are necessary to treat
diseases, it is crucial to find a safe alternative drug. Explicit
mechanisms for DDI were provided in MecDDI, which can
effectively avoid potential DDIs and facilitate the selection of
alternative drugs. Taking imatinib and warfarin as an example,
imatinib is effective in treating myeloid leukemia, while warfarin
is effective in preventing and treating venous thrombosis in
oncology patients. Both of the drugs are necessary for patients
with leukemia.96,97 By querying MecDDI, a serious potential
DDI between imatinib and warfarin was found; the underlying
mechanism was due to imatinib inhibition of CYP450 2C9
affecting warfarin metabolism. If imatinib must be used to treat
leukemia, drugs with the same pharmacological effects but not
metabolized by CYP450 2C9 (rivaroxaban, apixaban, edoxaban,
betrixaban, low-molecular heparin, and unfractionated heparin)
could be substituted for warfarin as candidates to reduce the
potential harms.96 However, in MecDDI, imatinib has a
moderate risk of DDI with rivaroxaban or apixaban, with a
mechanism via inhibition of CYP450 3A4, and no existing DDI
was found with the remaining drug candidates. Therefore,
edoxaban, betrixaban, low-molecular heparin, and unfraction-
ated heparin may be suitable alternatives to warfarin when co-
administered with imatinib.
Potential of MecDDI in DDI Prediction. In recent years, with

the extensive application of AI, AI-based methods have proven
to be able to infer potential DDIs quickly and econom-
ically.98−101 As well as the construction of excellent algorithms,
the performance of AI models largely depends on reliable data
sets. Furthermore, AI researchers are not satisfied with just
binary DDI prediction (whether two drugs interact or not), an
increasing number of studies are focusing on multi-type DDI
prediction (how two or more drugs interact with each
other),44,102−104 which is more meaningful and useful for
studying the hidden mechanisms behind combination drug use
or adverse reactions. Thus, one reliable knowledge base that
provides mechanistic clarification and classification for the large
number of available DDIs is highly required. In MecDDI,
1,78,406 DDIs with experimentally/clinically defined mecha-
nisms are provided, covering 1922 approved drugs, and the
mechanisms involved in these DDIs have been systematically
classified. Therefore, in the field of DDI prediction, the newly
developed MecDDI platform in this study should be considered
as a comprehensive, first-hand knowledge base to meet the
urgent needs of the relevant research community.

Standardization, Access, and Retrieval of Data. In order
to make MecDDI data easily accessible and analyzable for all
readers, the collected raw data were carefully cleaned and then
systematically standardized. Standardization of drug names was
realized by referencing to the available databases, such as TTD55

and PubChem.77 All disease indications were standardized by
the latest version of the ICD-11 officially released by WHO.105

Various types of data in MecDDI were fully cross-linked to a
variety of well-established databases. All data on drugs and DDIs
can be viewed, accessed, and downloaded online, and the
MecDDI database is now freely accessible by all users without
any login requirement at: https://idrblab.org/mecddi/.
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Despite the time and effort spent to ensure that the most
comprehensive DDI information is collected, new DDIs and
mechanisms of DDIs continue to be reported. New DDIs are
critical to avoid potential clinical adverse events, and
mechanistic information is important to guide rational drug
use. Therefore, we will continue to update MecDDI quarterly to
keep the data in MecDDI up to date.

■ CONCLUSIONS
DDIs have become a key threat to public health, and inadequate
knowledge of the mechanisms underlying the existing DDIs
significantly limits their clinical management. In this study, a
new platform was developed to clarify the mechanisms
underlying 1,78,406 DDIs by explicit descriptions and graphic
illustrations and provide systematic classification for all newly
collected DDIs using their clarified mechanisms. Due to the
long-lasting threats of DDI to public health, MecDDI could give
medical scientists a clear clarification of the mechanism
underlying all existing DDIs, support healthcare professionals
in the identification of alternative therapeutic strategies, and
prepare valuable big data for algorithm scientists to predict
potential DDIs.

■ DATA AVAILABILITY
MecDDI is freely accessible by all users without any login
requirement at https://idrblab.org/mecddi/, and all data in
MecDDI can be downloaded online.
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